


ЕСТЕСТВЕННО-НАУЧНОГО И ТЕХНОЛОГИЧЕСКОГО ПРОФИЛЕЙ

КОСТРОВА АЛЕКСАНДРА АНАТОЛЬЕВНА,

ЗАМЕСТИТЕЛЬ ДИРЕКТОРА ПО УЧЕБНО-ВОСПИТАТЕЛЬНОЙ РАБОТЕ

НАВАЛИХИНА ОЛЬГА ВИКТОРОВНА, УЧИТЕЛЬ ХИМИИ

КОГОАУ КФМЛ, 2023

# ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ФОТОМЕТРИИ

- Фотометрия метод анализа, позволяющий количественно определять содержание компонента в пробе на основании измерения энергетических характеристик поля излучения (от «фωτός» (греч) цвет и «μετρέω» (греч) измеряю).
- Закон Бугера-Ламберта-Бера: Растворы одного и того же окрашенного вещества при одинаковой концентрации этого вещества и толщине слоя раствора поглощают равное количество световой энергии.

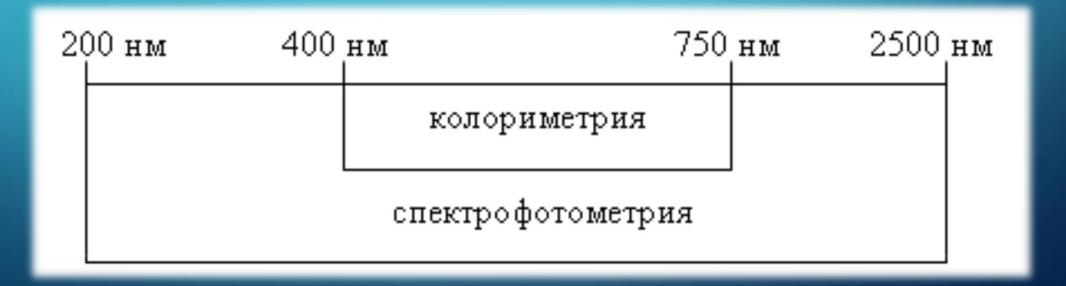
# ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ФОТОМЕТРИИ

• Интенсивность окраски раствора находится в прямой зависимости от концентрации окрашенного вещества и от толщины слоя раствора.














# МЕТОДЫ ФОТОМЕТРИИ

• Колориметрия и фотоэлектроколориметрия основаны на измерении поглощения света окрашенными растворами в видимой части спектра, а спектрофотометрия использует не только видимую часть спектра, но и примыкающие к ней ультрафиолетовый и инфракрасный участки спектра.



# ВИЗУАЛЬНАЯ КОЛОРИМЕТРИЯ

• Методы анализа, позволяющие количественно определять содержание компонента в пробе на основании измерения поглощения света окрашенными растворами в видимой части спектра, называются колориметрией (от «color» (лат) – цвет и «μετρέω» (греч) – измеряю).



### ВИЗУАЛЬНАЯ КОЛОРИМЕТРИЯ

• *Метод стандартных серий*: приготовление серии стандартных окрашенных растворов с возрастающей известной концентрацией компонента X и визуальное сравнение интенсивности окраски определяемого раствора со стандартными. Содержание искомого компонента определялось приблизительно таким же, каким было в стандартном растворе, наиболее близком по цвету к анализируемому раствору.



# ПРИМЕР ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЫ

• «Сравнение содержания β-каротина в куриных яйцах разных

производителей»



# ВИЗУАЛЬНАЯ КОЛОРИМЕТРИЯ

- Результат определений сильно зависит от визуальных особенностей аналитика, обладает невысокой точностью и является приблизительным.
- Кроме того, часто появляется необходимость возобновлять шкалу стандартных растворов из-за неустойчивости окраски некоторых из них.
- Позже перечисленные недостатки визуальной колориметрии были устранены использованием приборов – фотоэлектроколориметров.



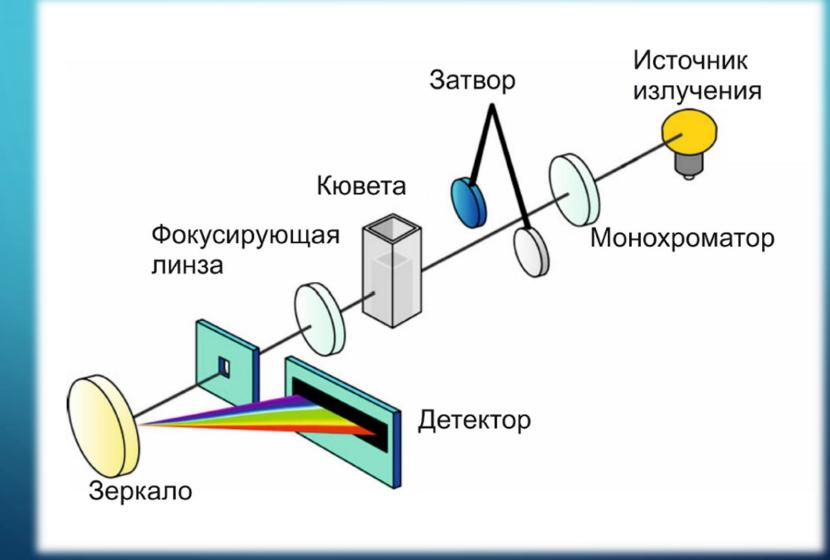




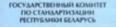
# ФОТОЭЛЕКТРОКОЛОРИМЕТРИЯ –

фотометрический метод анализа, количественно определяющий содержание компонента в пробе на основании измерения оптической плотности окрашенных растворов специальными приборами — фотоэлектроколориметрами.

- Фотоэлектроколориметр определяет интенсивность окраски цветного раствора с помощью фотоэлемента. Фотоэлемент слой полупроводника (сульфид серебра, селен и др.) прибор, в котором световая энергия преобразуется в электрическую.
- Преобразование световой энергии в электрическую в фотоэлементе связано с явлением фотоэффекта. *Фотоэффект* это отрыв электронов от атомов различных веществ под влиянием световой энергии.


# ПРИНЦИП РАБОТЫ ФОТОКОЛОРИМЕТРА

- Принцип действия фотоколориметра основан на сравнении светового потока  $I_0$ , прошедшего через раствор сравнения (фоновый), и светового потока I, прошедшего через исследуемый раствор.
- Отношение I/I<sub>0</sub> называется коэффициентом пропускания Т (или просто пропусканием), а десятичный логарифм величины, обратной пропусканию оптической плотностью D (поглощением).
- Оптическая плотность D раствора прямо пропорциональна концентрации растворенного вещества:


$$D = -\log(I/I_0) = \epsilon \cdot C \cdot I$$

где ε - молярный коэффициент поглощения, С - концентрация анализируемого раствора, I - длина оптического пути (толщина слоя раствора), см.

# ОБЩАЯ СХЕМА ИЗМЕРИТЕЛЬНОГО ПРИБОРА В ФОТОМЕТРИИ



OR NAREPHOE OROUNDE WATER ПРОИЗВОДСТВО И ПОСТАВКИ





STATE COMMITTEE FOR STANDARTIZATION OF THE

#### СЕРТИФИКАТ

ОБ УТВЕРЖАЕНИИ ТИПА СРЕАСТВ ИЗМЕРЕНИЙ

PATTERN APPROVAL CERTIFICATE OF MEASURING INSTRUMENTS

# ФОЛОКОЛОРИМЕТРЫЕ ЭКОЛЕСТ 2020 4 модификации

Описание типа средств измерений приведено в приложении и является неотъемлемой частью настоящего сертификата.

# ПОСЛЕДОВАТЕЛЬНОСТЬ ОПЕРАЦИЙ ФОТОКОЛОРИМЕТРИИ

- Приготовление серии стандартных растворов
- Выбор длины волны
- Построение калибровочного графика зависимости оптической плотности раствора от концентрации определяемого вещества
- Определение оптической плотности анализируемого раствора
- Расчет концентрации определяемого вещества по оптической плотности анализируемого раствора

# ФОТОМЕТРИЧЕСКАЯ РЕАКЦИЯ

- Если определяемый компонент не окрашен или интенсивность его светопоглощения мала;
- если полосы определяемого и посторонних компонентов перекрываются;

• если определяемый компонент присутствует в виде нескольких форм,

то прибегают к фотометрической реакции.

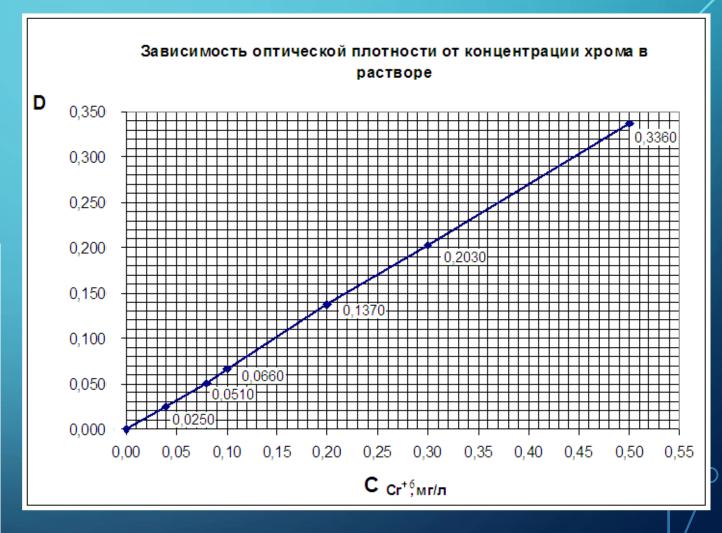




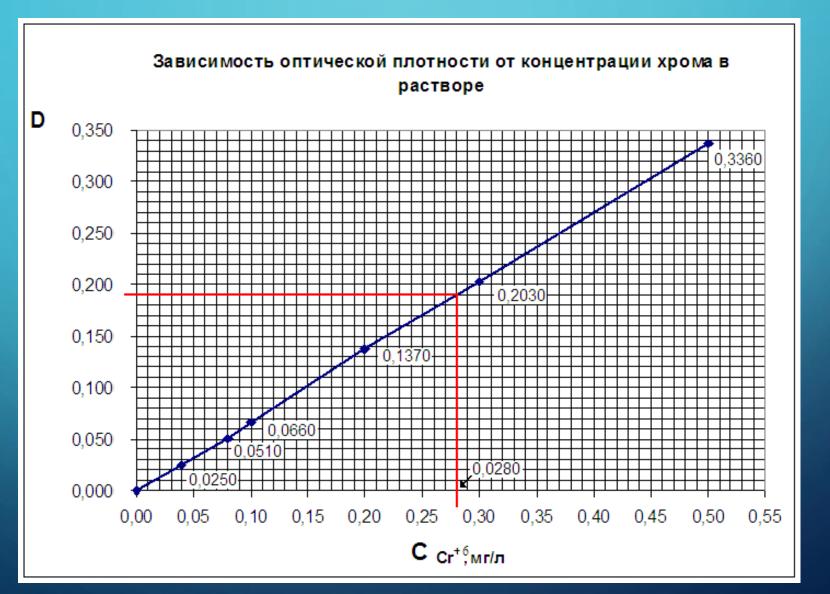
# ВЫБОР ДЛИНЫ ВОЛНЫ СВЕТА ДЛЯ ФОТОМЕТРИИ

| Окраска раствора | Длина волны света, нм |
|------------------|-----------------------|
| Зеленая          | 380-425               |
| Желто-зеленая    | 425-470               |
| Желтая           | 470-475               |
| Оранжевая        | 475-480               |
| Красная          | 480-495               |
| Пурпурная        | 495-535               |
| Синяя            | 535-580               |
| Зелено-синяя     | 580-585               |
| Сине-зеленая     | 585-770               |

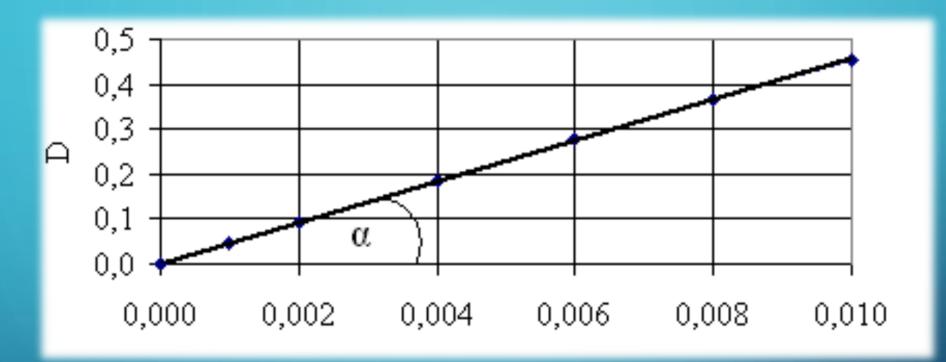
| 595 - 770 Желтовато-красный |
|-----------------------------|
| 585 - 595 Желто-красный     |
| 580 - 585 Красновато-желтый |
| 575 - 580 Желтый            |
| 565 - 575 Зеленовато-желтый |
| 555 - 565 Зелено-желтый     |
| 535 - 555 Желтовато-зеленый |
| 495 - 535 Зеленый           |
| 485 - 495 Синевато-зеленый  |
| 480 - 485 Сине-зеленый      |
| 475 - 480 Зеленовато-синий  |
| 470 - 475 Синий             |
| 380 - 470 Красновато-синий  |
|                             |


Выбор света определенной волны для фотометрии в зависимости от цвета раствора

Спектр света


# ПОСТРОЕНИЕ КАЛИБРОВОЧНОГО ГРАФИКА




| Концентрация хрома,<br>мг/л | Оптическая<br>плотность |
|-----------------------------|-------------------------|
| 0,04                        | 0,025                   |
| 0,08                        | 0,051                   |
| 1,00                        | 0,066                   |
| 2,00                        | 0,137                   |
| 3,00                        | 0,203                   |
| 5,00                        | 0,336                   |
| проба                       | 0,190                   |



# ОПРЕДЕЛЕНИЕ КОНЦЕНТРАЦИИ РАСТВОРА ПО КАЛИБРОВОЧНОМУ ГРАФИКУ



# РАСЧЕТ КОНЦЕНТРАЦИИ ВЕЩЕСТВА



• В формуле D =  $-\log(I/I_0) = \varepsilon \cdot C \cdot I$  величина  $\varepsilon$  является константой, угловым коэффициентом, если построить по результатам экспериментов график, то это будет прямая, а  $\varepsilon$  – тангенсом наклона этой прямой.

# РАСЧЕТ КОНЦЕНТРАЦИИ ВЕЩЕСТВА

- **Метод наименьших квадратов** основан на минимизации суммы квадратов отклонений экспериментальных результатов от исходных данных. Этот метод использует элементы теории вероятностей, математического анализа и статистики.
- Применяя метод наименьших квадратов, мы усредняем угловой коэффициент, минимизируем погрешности и получаем новую прямую, тангенс наклона которой максимально приближен к истинному коэффициенту.

# ПРИМЕНЕНИЕ ФОТОМЕТРИИ

- Фотометрический метод анализа на сегодняшний день является одним из наиболее распространенных инструментальных методов.
- Достоинства фотометрии: его высокая точность, возможность работать с малыми количествами веществ и относительно небольшое время, затрачиваемое на анализ.
- Область применения фотометрического анализа очень широка и включает в себя анализы, проводимые в промышленных, учебных, научно-исследовательских, фармацевтических, химико-технологических, экологических, клинико-диагностических медицинских, биохимических и других лабораториях.